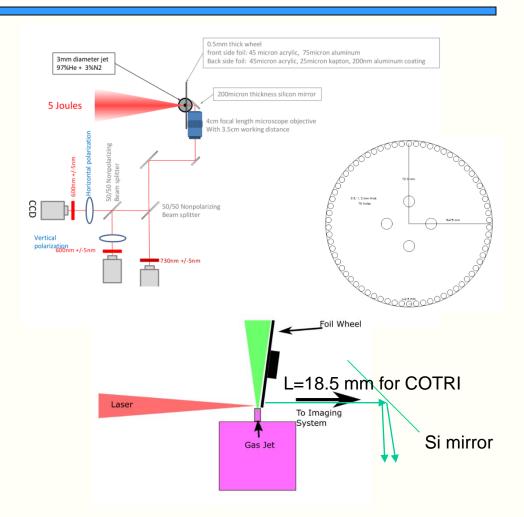
Coherent Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

Alex H. Lumpkin, Fermilab
Workshop on Beam Acceleration
in Crystals and Nanostructures
June 25, 2018
Batavia, IL USA

Introduction and Context


- Recent reports of quasi-monoenergetic laser plasma accelerator (LPA) beams at 2 GeV and 100 MeV demonstrated normalized transverse emittances below 1 mm-mrad and divergences less than 1/gamma in both cases [1,2].
- Such unprecedented LPA beam parameters can, in principle, be addressed by utilizing the properties of coherent optical transition radiation (COTR).
- Practical challenges of utilizing these techniques with the LPA configurations will also be discussed.
 - 1. Xiaoming Wang et al., Nature Communications, June 11, 2013.
 - 2. Hai-EnTsai, Chih-Hao Pai, and M.C. Downer, AIP Conf. Proc. **1507**, 330 (2012).

HZDR LPA Setup

- Use 1 mm and 0.5 mm wheels
- Al foil in front, Al coated Kapton tape back
- Microscope Objective ~4 cm from foil for near field (NF).
- 4 cameras to measure 2
 polarizations and unpolarized
 signal at 600 nm plus far field
 (FF) at 633 nm
- Ability to move the wheel & objective along beam axis
- Two COTR sources at L=18.5 mm form interference fringes in FF.

Courtesy of M. LaBerge, rev

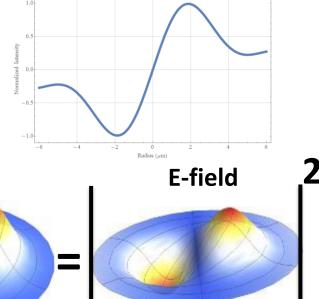
Optical Transition Radiation In Laser Plasma Accelerators

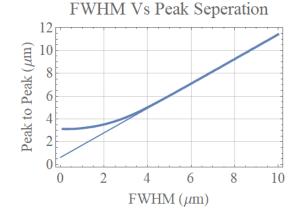
Coherent Optical Transition Radiation (COTR)

- Coherent signal $\propto N^2$ as opposed to N
- Level of coherence related to Fourier transform of longitudinal bunch profile

Coherent Point Spread Function

• Single electron **E-field** pattern


$$E \propto \sin \varphi \int_0^{\theta lens} \frac{\theta^2}{\theta^2 + 1/(\beta \gamma)^2} J_1\left(\frac{2\pi}{\lambda} \frac{\rho \theta}{M}\right) d\theta$$


- Central minimum never fills in
- Highly sensitive to skew
- Only samples coherent portion of beam
- Multiple colors + CTR spectra could be used to create a full bunch reconstruction

Courtesy of M. LaBerge

Intensity

Adding Coherence to PSF Model

Summing Fields

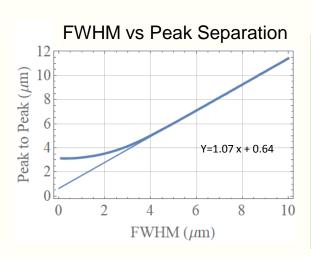
-5

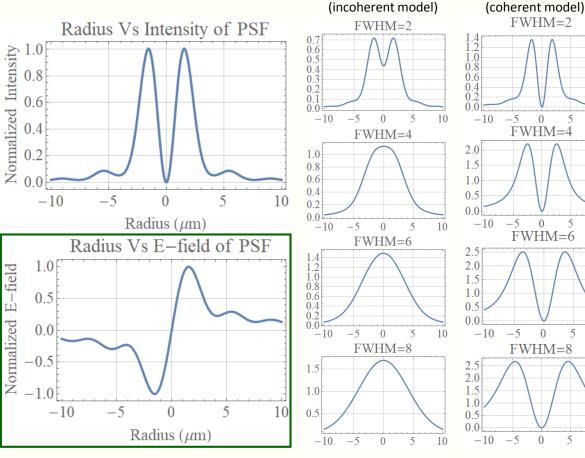
FWHM=2

0

FWHM=4

0


FWHM=6


0

FWHM=8

10

- Previous NF OTR work has been on incoherent electron bunches
- Lobe separation does not greatly increase in incoherent model
- Lobe separation increases significantly in coherent model, 600 nm cases below.

Courtesy of M. LaBerge

Summing Intensities

10

KEK Experimental OTR PSF

- KEK staff used vertical polarizer and small beam to observe PSF and suggested potential use of structure.
 - Use PSF valley for profile measurements at the PSF limit.

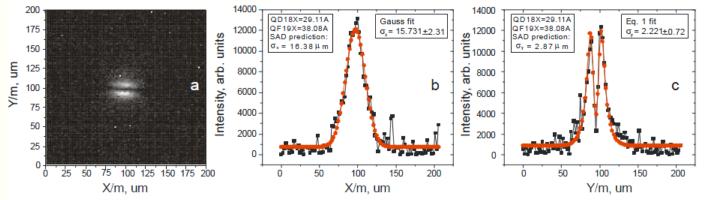


Figure 3: CCD image of the OTR taken with linear polarizer and 500 nm optical filter (a) and two image projections: horizontal (b) and vertical (c).

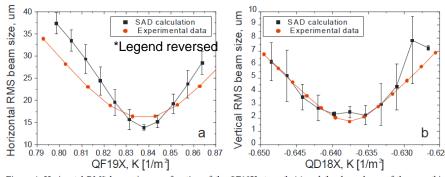
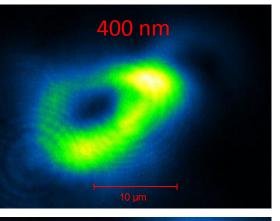
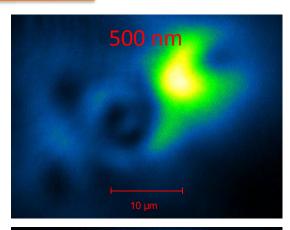


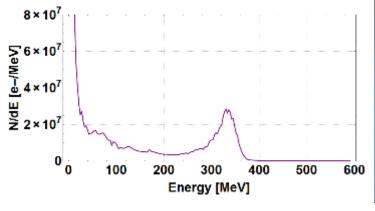
Figure 4: Horizontal RMS beam size as a function of the QF19X strength (a) and the dependence of the smoothing parameter $\sigma(\text{Eq. 1})$ versus QD18X quadrupole magnet strength. SAD predictions of the vertical beam size for the same magnet strengths are also shown in the picture.

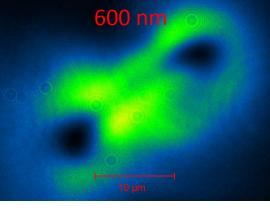
$$f(x) = a + \frac{b}{1 + [c(x - \Delta x)]^4} \left[1 - e^{-2c^2\sigma^2} \cos[c(x - \Delta x)] \right]$$
 (1)

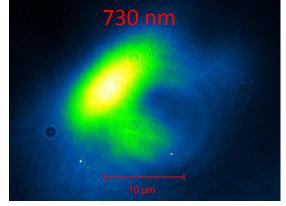
where a, b, c, σ , and Δx are free parameters of the fit function, namely: a is the vertical offset of the distribution with respect to zero which included a constant background; b is the amplitude of the distribution; c is the distribution width; σ is the smoothing parameter dominantly defined by the beam size; and Δx is the horizontal offset of the distribution with respect to zero

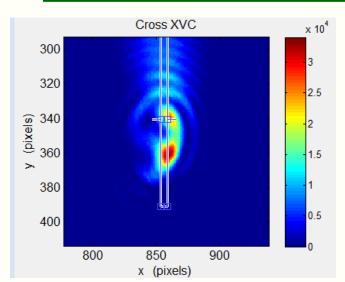

A. Aryshev et al., IPAC10

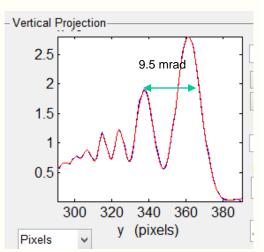


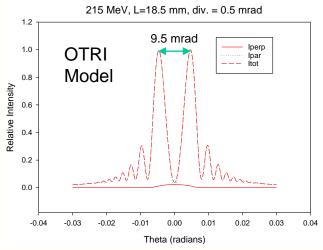

Coherent Optical Transition Radiation Observed at HZDR (LaBerge)



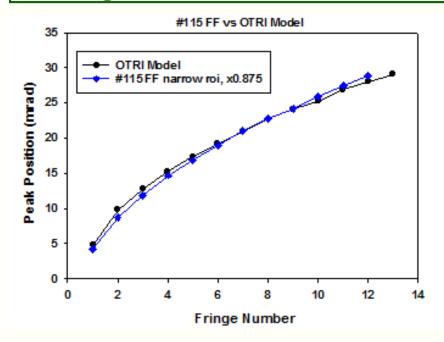

- Significant sub-structure evident across multi-color images
- Structure not apparent on electron spectrometer

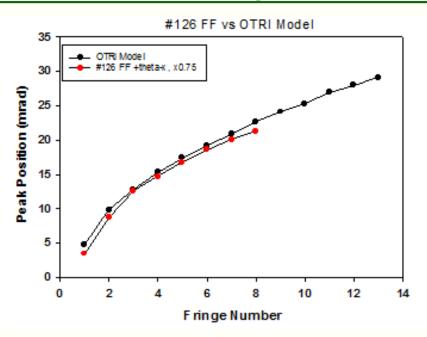





HZDR A.D. Data: June 1, 2017

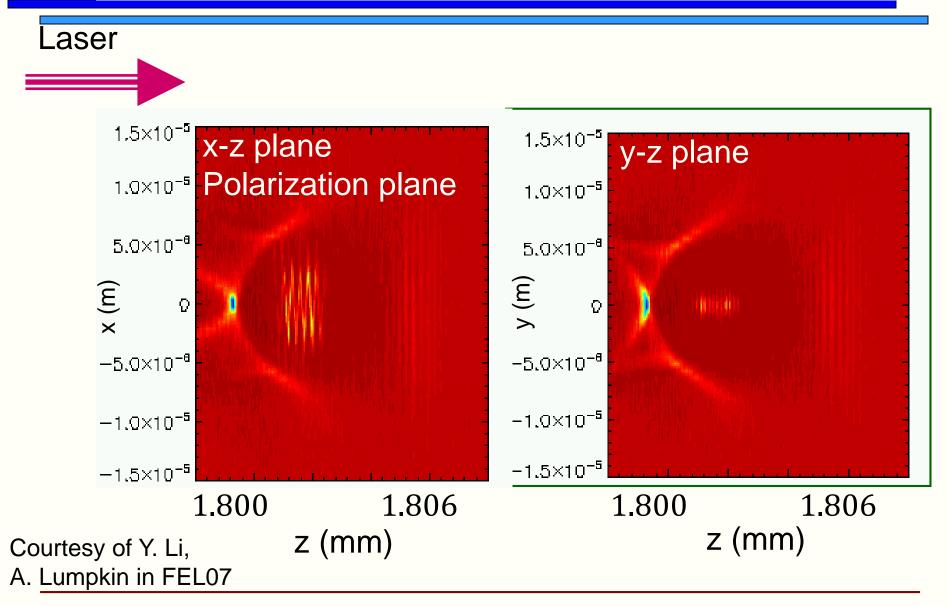
- Shot #115, Far Field, 633 x10 nm BPF, ND2.6, 215 MeV, L=18.5mm, 100 pC, 9-10 fringes, consistent with OTRI/COTRI.
- Asymmetric divergences and/or beam sizes indicated. Unpolarized COTR>
- Last 8 peaks match model to ~5% with 0.35 mrad/pixel. Delta main peaks= 23.5 pix.
- COTR enhancements of about 10⁵ due to microbunching.





Fringe Peak Positions Checked

- Experimental fringe peak positions were compared to the OTRI model which are very close to COTRI model.
- Parameters: 215 MeV, 633 nm, L=18.5 mm,
- Angular calibration factor: 0.35 ± 0.05 mrad/pixel

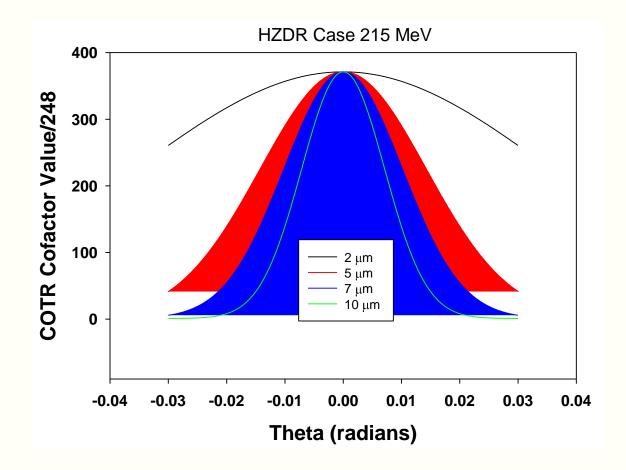


Laser Modulation of the Beam Structure in the Bubble

SUMMARY

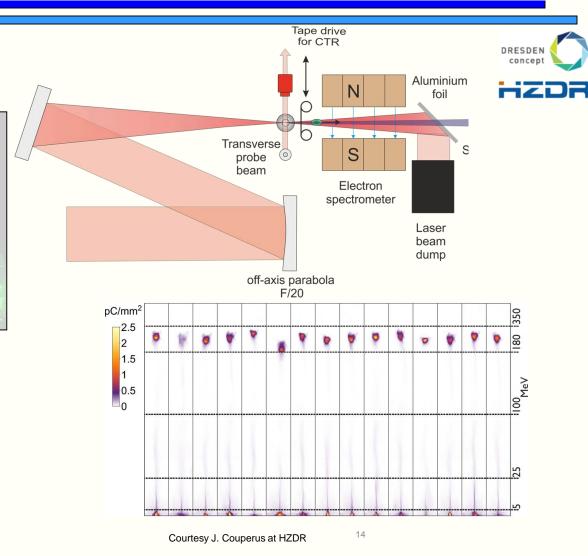
- For the first time electron-beam divergence information at sub-mrad range was obtained just outside the plasma bubble using COTRI imaging. Hot Foil scattering issue.
- A model of the COTR PSF shows beam size dependencies in the lobe separation and lobe width.
- COTR PSF plus COTRI techniques provide emittance estimates of microbunched electron beamlets uniquely.
- Signal enhancements are in 10⁴ to 10⁵ range indicating significant microbunching occurred at visible wavelengths within the LPA process. New insights!
- The COTR provides a unique way of measuring the microbunching in the beam: single shot, minimally invasive, and high resolution. LPA Simulations needed.

Microbunching Mechanisms


- Microbunching of an electron beam, or a z-dependent density modulation with a period λ, can be generated by several mechanisms:
 - In self-amplified spontaneous emission or (SASE) induced microbunching (SIM) the electron beam is bunched at resonant wavelength and harmonics. This is narrow band.
 - The LSC-induced microbunching (LSCIM) starts from noise fluctuations in the charge distribution which causes an energy modulation that converts to density modulation following Chicane compression. This is a broadband case.
 - The laser-induced microbunching (LIM) occurs at the laser resonant wavelength (and harmonics) as the e-beam copropagates through a wiggler with the laser beam followed by Chicane compression. This is narrow-band. (LPA case new.)
- A microbunched beam will radiate coherently.(COTR)

COTRI Cofactors: HZDR Case

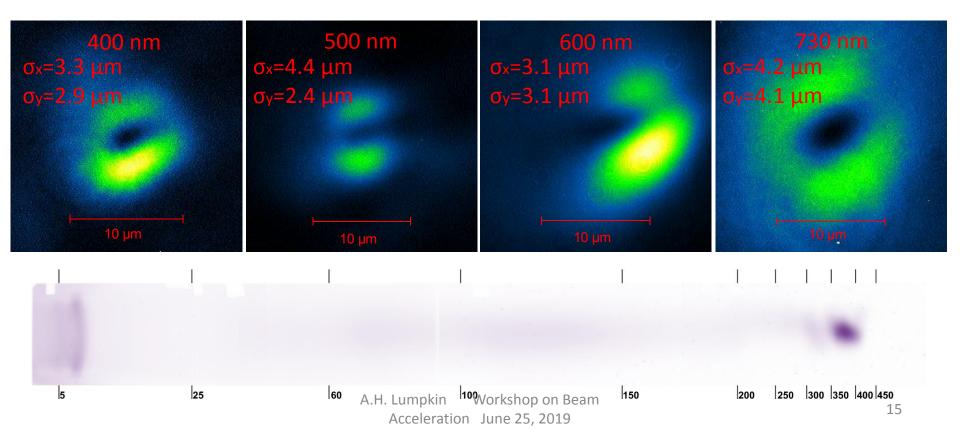
Beam sizes 2,5,7,10 μm, 100 pC, N_b=2%


Draco Laser and LPA at HZDR

Draco Laser Parameters

- $\lambda_0 = 800 \text{ nm}$
- up to 4 J on target
- 27 fs pulse width (FWHM)
- Strehl-ratio > 0.9
- 20 µm FWHM

_	
Parameters	Mean ± Shot-to-shot jitter
Mean peak	$\textbf{250 MeV} \pm 22.5 \ \text{MeV}$
energy	
Charge in	220 pC ± 40 pC
fwhm	
Abs. energy	$\textbf{36 MeV} \pm 11 \ \text{MeV}$
width	
Divergence	$\textbf{7 mrad} \pm 1 \text{mrad}$



Coherent Optical Transition Radiation Observed at HZDR (LaBerge)

Evidence of Coherence Dominated OTR

- The level of signal: Radiation split across eight cameras with narrow bandpass
- Central minimum still approximately zero despite the 'donut' size

